a2 United States Patent

Collins et al.

US009135089B2

US 9,135,089 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR
FACILITATING A PERSISTENCE
APPLICATION PROGRAMMING INTERFACE

Inventors: Jeffrey M. Collins, San Mateo, CA
(US); Calum Murray, Santa Rosa, CA
(US); Robert A. Luben, Fremont, CA
(US); James Lee Showalter, Los Gatos,
CA (US); Raymond J. Chapman, San

Jose, CA (US)
Assignee: INTUIT INC., Mountain View, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1304 days.

Appl. No.: 12/249,429

Filed: Oct. 10,2008
Prior Publication Data
US 2010/0095311 Al Apr. 15, 2010
Int. CI.
GOG6F 3/00 (2006.01)
GOGF 9/44 (2006.01)
GOG6F 9/46 (2006.01)
GOGF 13/00 (2006.01)
GOG6F 9/54 (2006.01)
HO4L 29/08 (2006.01)
U.S. CL
CPC ..o GO6F 9/541 (2013.01); HO4L 67/02

(2013.01); HO4L 67/28 (2013.01); GO6F
2209/542 (2013.01)

Field of Classification Search
CPC e GOGF 9/541

USPC ottt 719/328
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,286,104 B1* 9/2001 Buhleetal 726/4
2003/0046298 Al* 3/2003 Weedon .. 707/102
2007/0016617 Al* 1/2007 Lomet 707/200
2007/0285993 Al* 12/2007 Bindewald etal. 365/189.05
2009/0064272 Al* 3/2009 Goldszmidtetal. 726/1

* cited by examiner

Primary Examiner — Timothy A Mudrick
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP

(57) ABSTRACT

One embodiment of the present invention provides a system
for implementing a persistence application programming
interface (API) that is platform independent and can make
up-calls to business logic. During operation, the system
receives a request at the API to execute a command at a
persistence tier of an n-tier distributed application. In
response to the request, the system determines an entity type
for an entity affected by the command. Next, the system
identifies a function at a middle tier of the n-tier distributed
application that is associated with the entity type and the
command, wherein the middle tier includes the business
logic. The system then sends an instruction to the middle tier
to execute the function. Finally, upon receiving a confirma-
tion at the API that the function executed, the system executes
the command at the persistence tier.

20 Claims, 3 Drawing Sheets

RECEIVE REQUEST AT API TO TO EXECUTE A COMMAND
AT A PERSISTENCE TIER OF AN n-TIER DISTRIBUTED
APPLICATION
302

v

DETERMINE AN ENTITY TYPE FOR AN ENTITY AFFECTED
BY THE COMMAND
304

y

IDENTIFY A FUNCTION AT A MIDDLE-TIER OF THE n-TIER
DISTRIBUTED APPLICATION THAT IS ASSOCIATED WITH
THE ENTITY TYPE AND THE COMMAND
306

| START A TRANSACTION

y

SEND AN INSTRUCTION TO THE MIDDLE TIER TO
EXECUTE THE FUNCTION
308

v

EXECUTE THE COMMAND AT THE PERSISTENCE TIER
UPON REGEIVING A CONFIRMATION THE THE FUNCTION
EXECUTED
310

| COMMIT THE TRANSACTION
312

U.S. Patent Sep. 15, 2015 Sheet 1 of 3

COMPUTING ENVIRONMENT 1

US 9,135,089 B2

o

0

g

USER CLIENT
120 110

130

w
m
P}
<
m
Pl

@)
I

USER CLIENT
121 111

/\/‘j“s‘

DATABASE
170

SERVER
150

—

|

CLIENT
112

SERVER

DEVICES
180

FIG. 1

—
=
o

APPLIANCE
190

U.S. Patent Sep. 15, 2015 Sheet 2 of 3 US 9,135,089 B2

APPARATUS 200

RECEIVING MECHANISM

PROCESSOR :
214 202
DETERMINATION
MECHANISM
MEMORY 204
216
IDENTIFICATION
MECHANISM
206

SENDING MECHANISM
208

EXECUTION MECHANISM
210

FIG. 2

U.S. Patent Sep. 15, 2015 Sheet 3 of 3 US 9,135,089 B2

START

RECEIVE REQUEST AT APl TO TO EXECUTE A COMMAND
AT A PERSISTENCE TIER OF AN n-TIER DISTRIBUTED
APPLICATION
302

DETERMINE AN ENTITY TYPE FOR AN ENTITY AFFECTED
BY THE COMMAND
304

IDENTIFY A FUNCTION AT A MIDDLE-TIER OF THE n-TIER
DISTRIBUTED APPLICATION THAT IS ASSOCIATED WITH
THE ENTITY TYPE AND THE COMMAND
306

| START A TRANSACTION
307

SEND AN INSTRUCTION TO THE MIDDLE TIER TO
EXECUTE THE FUNCTION
308

EXECUTE THE COMMAND AT THE PERSISTENCE TIER
UPON RECEIVING A CONFIRMATION THE THE FUNCTION
EXECUTED
310

| COMMIT THE TRANSACTION
312

FIG. 3

US 9,135,089 B2

1
METHOD AND APPARATUS FOR
FACILITATING A PERSISTENCE
APPLICATION PROGRAMMING INTERFACE

BACKGROUND
Related Art

In order to improve performance and scalability, many
web-based applications are built using a multi-tier architec-
ture, wherein the web-based application is spread across mul-
tiple servers or clusters (tiers) that provide different types of
functionality. For example, a typical web-based application
may be comprised of three distinct and independent tiers: a
presentation tier that serves as a front-end for the application,
which acts as an intermediary between the users and the
web-based application; a business tier, or middle tier, that
includes all of the business logic of the web-based applica-
tion; and a persistence tier that includes a database or other
storage system or device. Each tier executes independently of
the other tiers, and can be replaced or upgraded without
adversely affecting the other tiers.

Despite the many advantages of multi-tier web applica-
tions, these web-applications have a few problems. For
example, in many environments, each tier is maintained by
different groups that have little or no knowledge of the other
tiers. For instance, the application programmers that create
the business logic typically do not know about the implemen-
tation details of the persistence tier. Furthermore, database
administrators typically do not know much about the business
logic. This can be problematic when a complex operation
involves multiple interactions between the tiers. For example,
if an update to a record in a database triggers a secondary
update to a second table, the secondary update to the second
table may need to be checked by the business logic to make
sure that the secondary update is in compliance with the
defined business constraints and rules. In this example, the
persistence tier would have to send the secondary update back
to the middle tier (an “up-call”) so that the middle tier can
perform this check.

In some multi-tier applications, special triggers or stored
procedures are implemented at the persistence tier to make
these up-calls to the business tier when necessary. However,
these implementations involve a blurring of the tier bound-
aries, and can tie an organization to a specific implementation
or persistence-tier provider.

SUMMARY

One embodiment of the present invention provides a sys-
tem for implementing a persistence application programming
interface (API) that is platform independent and can make
up-calls to business logic. During operation, the system
receives a request at the API to execute a command at a
persistence tier of an n-tier distributed application. In
response to the request, the system determines an entity type
for an entity affected by the command. Next, the system
identifies a function at a middle tier of the n-tier distributed
application that is associated with the entity type and the
command, wherein the middle tier includes the business
logic. The system then sends an instruction to the middle tier
to execute the function. Finally, upon receiving a confirma-
tion at the API that the function executed, the system executes
the command at the persistence tier.

In some embodiments of the present invention, when the
system sends the instruction to the middle tier to execute the

30

40

45

50

55

65

2

function, the system also sends the command to the middle
tier, wherein a portion of the command is used as a parameter
for the function.

In some embodiments of the present invention, the system
receives a second request from the middle tier at the API to
execute a second command at the persistence tier.

In some embodiments of the present invention, in response
to the second request, the system determines a second entity
type for a second entity affected by the second command.
Next, the system identifies a second function at the middle tier
of'the n-tier distributed application that is associated with the
second entity type and the second command. The system then
sends a second instruction to the middle tier to execute the
second function. Finally, upon receiving a second confirma-
tion at the API that the second function executed, the system
executes the second command at the persistence tier.

In some embodiments of the present invention, the system
creates a transaction at the API that includes at least one of the
instruction and the command. Next, the system determines if
the function executed successfully at the middle tier and the
command executed successfully at the persistence layer. If so,
the system commits the transaction. However, if not, the
system rolls-back the transaction.

In some embodiments of the present invention, the system
creates the transaction by creating a persistence tier sub-
transaction at the persistence tier. Note that committing the
transaction involves committing the persistence tier sub-
transaction, and rolling-back the transaction involves rolling-
back the persistence tier sub-transaction.

In some embodiments of the present invention, the persis-
tence tier includes a relational database.

In some embodiments of the present invention, prior to
identifying the function at the middle tier of the n-tier distrib-
uted application, the system receives a registration at the API
that identifies the function and the associated entity type and
command.

In some embodiments of the present invention, the steps of
identifying the function at the middle tier and sending the
instruction to the middle tier are handled by an Orchestration
Delegate, wherein the Orchestration Delegate orders the
execution of code previously registered with the API when a
registration condition is satisfied.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a computing environment in accordance
with an embodiment of the present invention.

FIG. 2 illustrates an apparatus in accordance with an
embodiment of the present invention.

FIG. 3 presents an associated flow chart illustrating the
process of facilitating a persistence application programming
interface (API) that is platform independent and can make
up-calls to business logic in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present

US 9,135,089 B2

3

invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not lim-
ited to, volatile memory, non-volatile memory, magnetic and
optical storage devices such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital
video discs), or other media capable of storing computer-
readable media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-read-
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, the methods and processes described below
can be included in hardware modules. For example, the hard-
ware modules can include, but are not limited to, application-
specific integrated circuit (ASIC) chips, field-programmable
gate arrays (FPGAs), and other programmable-logic devices
now known or later developed. When the hardware modules
are activated, the hardware modules perform the methods and
processes included within the hardware modules.

Overview

One embodiment of the present invention provides a sys-
tem for implementing a persistence application programming
interface (API) that is platform independent and can make
up-calls to business logic. During operation, the system
receives a request at the API to execute a command at a
persistence tier of an n-tier distributed application. In
response to the request, the system determines an entity type
for an entity affected by the command. Next, the system
identifies a function at a middle tier of the n-tier distributed
application that is associated with the entity type and the
command, wherein the middle tier includes the business
logic. The system then sends an instruction to the middle tier
to execute the function. Finally, upon receiving a confirma-
tion at the API that the function executed, the system executes
the command at the persistence tier.

For example, all calls to the persistence layer can be
handled by the persistence API. The persistence API enables
the web-based application to save data to the database, and,
when doing so, executes business logic that checks validity,
performs bookkeeping, etc. The persistence APl makes it
possible to call middle-tier logic from the persistence tier,
which is actually an up-call from a lower layer to a higher
layer. These up-calls are made without the programmer who
writes the middle-tier code having any knowledge about the
implementation of the persistence tier. Note that the persis-
tence tier API enables the middle-tier logic to not have to
know about the persistence details. In addition, the persis-
tence API enables the web-based application to remain por-
table across databases, object-relational (OR)-mappers, lan-
guages (such as Java™ and C#®), and platforms (such as
Windows® and Unix®).

In some embodiments of the present invention, when the
system sends the instruction to the middle tier to execute the
function, the system also sends the command to the middle
tier, wherein a portion of the command is used as a parameter
for the function.

10

15

20

25

30

35

40

45

50

55

60

65

4

In some embodiments of the present invention, the system
receives a second request from the middle tier at the API to
execute a second command at the persistence tier. Note that
while the middle tier is executing code associated with the
command, the middle tier can send additional requests to the
persistence API. Furthermore, each of these additional
requests can, in turn, result in even more additional requests.

In some embodiments of the present invention, in response
to the second request, the system determines a second entity
type for a second entity affected by the second command.
Next, the system identifies a second function at the middle tier
of'the n-tier distributed application that is associated with the
second entity type and the second command. The system then
sends a second instruction to the middle tier to execute the
second function. Finally, upon receiving a second confirma-
tion at the API that the second function executed, the system
executes the second command at the persistence tier.

In some embodiments of the present invention, the system
creates a transaction at the API that includes at least one of the
instruction and the command. Next, the system determines if
the function executed successfully at the middle tier and the
command executed successfully at the persistence layer. If so,
the system commits the transaction. However, if not, the
system rolls-back the transaction. Note that the transactions
are created, committed, and rolled-back from the persistence
APL

In some embodiments of the present invention, the system
creates the transaction by creating a persistence tier sub-
transaction at the persistence tier. Note that committing the
transaction involves committing the persistence tier sub-
transaction, and rolling-back the transaction involves rolling-
back the persistence tier sub-transaction. In these embodi-
ments, the persistence API leverages the existing transaction
framework of the database.

In some embodiments of the present invention, the persis-
tence tier includes a relational database. Note that while many
embodiments of the present invention use a relational data-
base, in general any type of data storage may be used. In some
embodiments, this may include an XMI -based file manage-
ment system.

In some embodiments of the present invention, prior to
identifying the function at the middle tier of the n-tier distrib-
uted application, the system receives a registration at the API
that identifies the function and the associated entity type and
command. Note that a programmer only needs to register a
specific function with the associated entity type and com-
mand, and does not need to know anything else about the
persistence tier.

For example, the programmer can register a specific func-
tion that applies business rules for the addition of a new
customer when the API receives a command that enters a new
record into a customer table.

In some embodiments of the present invention, the steps of
identifying the function at the middle tier and sending the
instruction to the middle tier are handled by an Orchestration
Delegate, wherein the Orchestration Delegate orders the
execution of code previously registered with the API when a
registration condition is satisfied.

Note that the Orchestration Delegate actively dispatches
these instructions to the middle tier as the commands are
executed at the API. Alternatively, the system could use a
registration model in lieu of the Orchestration Delegate
wherein the functions at the middle tier are configured to
listen for specific events at the APIL.

In one embodiment of the present invention, an API called
“the Repository” is the public API for all persistence opera-
tions. The implementation of this API: analyzes the incoming

US 9,135,089 B2

5

graph of Entities and ordinary objects; determines which
items are new and which items are updates to existing items;
swaps composition children for composition parents;
enforces constraints; and calls a logic delegate that performs
the actual persistence operations (create, read, update, and
delete). The logic delegate also calls middle-tier logic, which
is implemented as one or more Orchestration atoms that are
registered with the system. The middle-tier logic can perform
arbitrarily complex operations, including making additional
calls to the Repository. The Repository also takes care of
starting, committing, and rolling back transactions.
Computing Environment

FIG. 1 illustrates a computing environment 100 in accor-
dance with an embodiment of the present invention. Comput-
ing environment 100 includes a number of computer systems,
which can generally include any type of computer system
based on a microprocessor, a mainframe computer, a digital
signal processor, a portable computing device, a personal
organizer, a device controller, or a computational engine
within an appliance. More specifically, referring to FIG. 1,
computing environment 100 includes clients 110-112, users
120 and 121, servers 130-150, network 160, database 170,
devices 180, and appliance 190.

Clients 110-112 can include any node on a network includ-
ing computational capability and including a mechanism for
communicating across the network. Additionally, clients 110-
112 may comprise a tier in an n-tier application architecture,
wherein clients 110-112 perform as servers (servicing
requests from lower tiers or users), and wherein clients 110-
112 perform as clients (forwarding the requests to a higher
tier).

Similarly, servers 130-150 can generally include any node
on a network including a mechanism for servicing requests
from a client for computational and/or data storage resources.
Servers 130-150 can participate in an advanced computing
cluster, or can act as stand-alone servers. In one embodiment
of'the present invention, server 140 is an online “hot spare” of
server 150.

Users 120 and 121 can include: an individual; a group of
individuals; an organization; a group of organizations; a com-
puting system; a group of computing systems; or any other
entity that can interact with computing environment 100.

Network 160 can include any type of wired or wireless
communication channel capable of coupling together com-
puting nodes. This includes, but is not limited to, a local area
network, a wide area network, or a combination of networks.
In one embodiment of the present invention, network 160
includes the Internet. In some embodiments of the present
invention, network 160 includes phone and cellular phone
networks.

Database 170 can include any type of system for storing
data in non-volatile storage. This includes, but is not limited
to, systems based upon magnetic, optical, or magneto-optical
storage devices, as well as storage devices based on flash
memory and/or battery-backed up memory. Note that data-
base 170 can be coupled: to a server (such as server 150), to a
client, or directly to a network.

Devices 180 can include any type of electronic device that
can be coupled to a client, such as client 112. This includes,
but is not limited to, cell phones, personal digital assistants
(PDAs), smart-phones, personal music players (such as MP3
players), gaming systems, digital cameras, portable storage
media, or any other device that can be coupled to the client.
Note that in some embodiments of the present invention,
devices 180 can be coupled directly to network 160 and can
function in the same manner as clients 110-112.

15

20

40

45

55

6

Appliance 190 can include any type of appliance that can
be coupled to network 160. This includes, but is not limited to,
routers, switches, load balancers, network accelerators, and
specialty processors. Appliance 190 may act as a gateway, a
proxy, or a translator between server 140 and network 160.

Note that different embodiments of the present invention
may use different system configurations, and are not limited
to the system configuration illustrated in computing environ-
ment 100. In general, any device that is capable of commu-
nicating via network 160 may incorporate elements of the
present invention.

For example, in one embodiment of the present invention,
user 120 uses client 110 to access an n-tier web-based appli-
cation that is hosted on servers 140 and 150, and database
170. In this embodiment, server 140 serves as the presentation
tier, and handles all interactions with user 120 and client 110.
Additionally, server 150 comprises the business tier or middle
tier, and includes all of the business logic. Finally, database
170 comprises the persistence tier and provides the data stor-
age for the web-based application.

Apparatus

FIG. 2 illustrates an apparatus 200, and FIG. 3 presents an
associated flow chart illustrating the process of facilitating a
persistence application programming interface (API) that is
platform independent and can make up-calls to business logic
in accordance with an embodiment of the present invention.

Apparatus 200, which, for example, can comprise server
150, database 170, appliance 190, client 110, devices 180, or
any combination thereof, includes receiving mechanism 202,
determination mechanism 204, identification mechanism
206, sending mechanism 208, execution mechanism 210,
processor 214, and memory 216.

During operation, receiving mechanism 202 receives a
request at the API to execute a command at a persistence tier
of an n-tier distributed application (operation 302). Next,
determination mechanism 204 determines an entity type for
an entity affected by the command in response to the request
(operation 304). For example, the command could include an
update to an employee record to adjust the employee’s salary.
In this example, the entity type would be the employee table.

Identification mechanism 206 then identifies a function at
a middle tier of the n-tier distributed application that is asso-
ciated with the entity type and the command (operation 306),
wherein the middle tier includes the business logic. For
example, the function might check that the salary is within an
allowed range and that the person issuing the command has
sufficient rights to do so.

At this point, the API may optionally start a transaction
(operation 307). In some embodiments of the present inven-
tion, as described previously, the API may leverage an exist-
ing transaction system that is part of database 170.

Next, sending mechanism 208 sends an instruction to the
middle tier to execute the function (operation 308). Upon
receiving a confirmation at the API that the function executed,
execution mechanism 210 executes the command at the per-
sistence tier (operation 310). Finally, if the API previously
started a transaction, and if the function and the command
executed successfully, the API commits the transaction (op-
eration 312).

Exemplary Embodiment

The following section describes one embodiment of the
present invention for exemplary purposes only. Note that the
present invention is not meant to be limited to the details
described in this embodiment.

US 9,135,089 B2

7

This embodiment provides a system where persistence of
objects is controlled by an Entity Service API, wherein the
Entity Service calls Hibernate to perform CRUD (Create,
Read, Update, Delete) operations.

Note that Hibernate takes care of determining what to
create, update, and delete, by using its internal mechanism for
detecting dirty objects and for implementing persistence-by-
reachability (where it automatically determines what needs to
accomplished to CRUD the elements in an entire object
graph, or set of object graphs).

Repository, the public API for Extensible Data Access and
layer of abstraction above Entity Service, does not call Entity
Service directly for create, update, or delete operations.
Instead, Repository performs creates, updates, and deletes by
calling create, update, and delete CRUD Orchestrations.

Note that CRUD Orchestrations are implementations of the
ICrudDelegate interface, which is defined in the Repository
project.

The CRUD Orchestration Delegate interface is very
simple, and looks like this:

public interface ICrudDelegate

public Entity[] create(Entity[] entities);
public Entity[] update(Entity[] entities);
public void delete(Entity[] entities);

}

During system startup, a CRUD Orchestration Delegate
implementation is delegated into Repository by Orchestra-
tion initialization code. When Repository operations are
invoked, Repository checks to see if there is a CRUD Orches-
tration Delegate in Repository. If there is no CRUD Orches-
tration Delegate, Repository performs CRUD operations
without executing Orchestrations. However, if there is a
CRUD Orchestration Delegate, Repository works with the
CRUD Orchestration Delegate to correctly execute validation
logic, other business logic, and CRUD operations.

For composition relations, the system can let Hibernate
persist the object graph. The system can do this because the
system only defines CRUD Orchestrations for composition
parents.

For associations to Data Objects, and for hash maps of Data
Types, the system lets Hibernate persist the graph. The system
can do this because CRUD Orchestrations are never defined
for Data Objects or Data Types. However, for associations
among Entities, the system defines CRUD Orchestrations for
both ends of the association, and executes both CRUD
Orchestrations. Note that this requires coordination of CRUD
Orchestration executions and operations performed by Hiber-
nate for cascading persistence to associations.

The following discussion describes the details of how the
Repository manages execution of CRUD Orchestrations and
Hibernate persistence for object graph closures of Entities
presented to save and delete APIs.

Requirements and Use Cases

First, the system can ideally provide an API that has intui-
tive behavior, is easy to use, and produces correct results. This
is the top-level requirement. Everything else listed in this
section is intended to satisfy this requirement for clients of the
Repository API. For example, clients of the API can do the
following:

1. Create a new Customer Entity by saving an Invoice (new

or previously saved) that points to a new Customer
Entity.

5

10

20

25

40

45

55

8

2. Update a previously saved Customer Entity by changing
it in memory, associating to it from an Invoice, and
saving the Invoice.

3. Update a previously saved Customer Entity that is
already associated with an Invoice by changing the Cus-
tomer Entity in memory, and saving the Invoice.

The system can also run an entire set of operations under
one transaction. Repository needs to start a transaction at the
beginning of a call to a Repository operation (for example,
save), and commit that transaction at the end of the call. If
anything goes wrong at any point during the operation,
Repository needs to rollback the entire transaction.

The system can also remove duplicate entities before sub-
mitting arrays to the CRUD Orchestration Delegate. In non-
trivial graphs of Entities and Data Objects, it is possible (in
fact, likely) that the same Entity will be reachable by more
than one path through the graph. For example, two different
Invoice Entities could point to the same Customer Entity.

To avoid redundant invocations of Orchestration logic,
Repository can remove all duplicates from all arrays before
submitting them to the CRUD Orchestration Delegate, so that
each distinct Entity is seen exactly once by the Orchestration
engine.

The system can be configured to submit only new entities
to create orchestrations. Arrays submitted to the CRUD
Orchestration Delegate create method should only contain
new Entities (Entities that have never been saved to the data-
base before).

The system should submit only previously saved Entities
that are currently dirty to update orchestrations

Note that arrays submitted to the CRUD Orchestration
Delegate update method should only contain Entities that
have been saved to the database before and are now dirty. An
Entity is dirty if any of its simple Properties have changed, or
if any of its 1:1 relations have changed from not-null to null
(assuming they are nullable) or from null to not-null, or if any
of'its collection relations have had elements added or deleted.

For example, if a unidirectional association no longer
exists between a source Entity and a target Entity, Repository
can submit the source Entity to the CRUD Orchestration
Delegateto update. Similarly, ifa bidirectional association no
longer exists between two Entities, Repository can submit
both Entities to the CRUD Orchestration Delegate to update.
Note that this implies that relations (1:1 and multiple) should
track added and deleted elements.

The system should submit only previously saved Entities to
delete orchestrations. Moreover, arrays submitted to the
CRUD Orchestration Delegate delete method should only
contain Entities that have been saved to the database before.
An Entity can be deleted for one of two reasons:

1. The API client specifically calls Repository delete on the

Entity.

2. The Entity is a composition child that is removed from a
composition relation (1:1 or multiple), and the compo-
sition parent is saved, which needs to trigger delete on
the removed Entity.

The system can execute CRUD Orchestrations defined
along an inheritance path for an entity. For example, Entity
classes can be subclasses of other Entity classes, to any depth
specified by the modeler. When CRUD is performed on an
Entity that has parent classes in its inheritance path, CRUD
Orchestrations defined for the parent classes can be run on the
Entity. In other words, Orchestrations can execute polymor-
phically.

Note that Repository cannot implement this requirement,
because it has no parent Entity instances to pass into the
CRUD Orchestration Delegate. Instead, this requirement can

US 9,135,089 B2

9

be implemented entirely inside the Orchestration CRUD
Orchestration Delegate, by walking along the inheritance
path and running the Orchestrations defined for every Entity
class in the path.

The system can also prevent deletes of new Entities. When
Repository delete is called on a new Entity, it can throw an
exception. (Note that this is already taken care of by Entity
Service.)

The system can submit extended Entities instead of exten-
sions to CRUD Orchestration Delegate. When a CRUD
operation is performed on an Extension, Repository can
replace the Extension with the Entity it extends, and submit
the extended Entity to the CRUD Orchestration Delegate
instead of giving it the original Extension. There are two
reasons for this requirement:

1. An Extension may be one of n Extensions of a particular
Entity. In order for CRUD Orchestrations to execute
correctly, they should execute not just on the Extension,
but also on the extended Entity, and on all other Exten-
sions of the extended Entity. By flipping the Extensionto
the Entity it extends before invoking the CRUD Orches-
tration Delegate, all of the Orchestrations are executed
correctly. Note that this requires Orchestration Exten-
sion to work properly.

2. In Composites, the Orchestrations associated with the
extended Entity can be overridden, but this will not work
correctly unless the extended Entity, instead of the
Extension, is passed into the CRUD Orchestration Del-
egate.

The system should also submit only composition parent
entities to the CRUD Orchestration Delegate. When Reposi-
tory save or delete is called on a composition child Entity that
is new or dirty, Repository should replace the child Entity
with the parent Entity, and submit the parent Entity to the
CRUD Orchestration Delegate instead of giving it the child
Entity. If the parent Entity is new, Repository can submit the
parent Entity to the CRUD Orchestration Delegate to create.
If the parent Entity is not new, Repository can submit the
parent Entity to the CRUD Orchestration Delegate to update.

If the Entity that owns the child Entity is itself a child in a
composition relation, Repository can give the parent of the
parent to the CRUD Orchestration Delegate, instead of giving
it the parent, and so forth until the transitive closure of com-
position relations is exhausted upwards. Only the ultimate
parent of a chain of compositions should be given to the
CRUD Orchestration Delegate to update or create.

For example, if As own Bs and Bs own Cs, there should
only be an Orchestration defined for As, and that Orchestra-
tion needs to take care of whatever business logic is needed
for both Bs and Cs.

Note that this requirement encompasses the previous
requirement about Extensions, because Extensions are
mapped as bidirectional 1:1 compositions, with the Extension
as the child. However, it is important to specifically call out
the Extension case, because of the sub-requirement that
Orchestrations should run on all of the Extensions of the
extended Entity.

Execute CRUD Orchestrations Following Persistence of
Root Entity

This section encapsulates a revised approach for execution
of CRUD Orchestrations as part of Repository persistence
operations. The initial design path for driving automatic
CRUD Orchestrations of Entity objects, supplied to Reposi-
tory save and delete operations, involved collecting all can-
didate Entity objects from graph closures of supplied objects
and passing them to the CRUD Orchestration Delegate in

10

15

25

30

40

45

50

55

60

10

batches of homogeneous Entity types where both Entity Ser-
vice persistence operations and CRUD Orchestrations would
be performed.

Tightly coupling Entity persistence and CRUD Orchestra-
tions works well for each Entity object passed to Repository
save and delete methods. However, it presents challenges
when attempting to perform CRUD Orchestrations for Enti-
ties indirectly persisted as part of the object graph closure of
an Entity passed to the Repository in a save or delete opera-
tion. An Entity destined for implicit persistence can be easily
identified from the object graph closure an input Entity. The
issue is how to pass such an Entity to the CRUD Orchestration
Delegate, where both CRUD Orchestrations and persistence
are performed without raising conflicts in the persistence
layer. For example, saving a new Entity found in the object
graph closure of an Entity passed to Repository.save(T) will
produce an exception if already persisted as part of saving the
input Entity.

Rather than introducing constraints on persistence con-
figuration or imposing restrictions on the extent of automatic
CRUD Orchestrations allowed, an alternative plan maxi-
mizes execution of automatic CRUD Orchestrations for all
Entities impacted by Repository save and delete operations.
The idea is to process Entities in two steps with only a single
Entity passed to the CRUD Orchestration Delegate at any
given time. First, the system performs persistence and CRUD
Orchestrations for each Entity supplied to the Repository
operation. Actually, the Entity passed to the CRUD Orches-
tration Delegate may, in fact, be the composition root parent
if supplied Entity is a composition child, or the extended
Entity of a supplied Entity extension. The Entity forwarded to
the CRUD Orchestration Delegate in this step can be called
the “root Entity.” Note that the root Entity is persisted and
registered CRUD Orchestrations are executed.

At this point, CRUD Orchestrations for those Entities per-
sisted indirectly have not been performed and are outstand-
ing. Keep in mind that they are persisted as part of root Entity
persistence. The second step involves sending each of those
Entities to the CRUD Orchestration Delegate. In doing so, the
Entities have CRUD Orchestrations fired and are passed to the
persistence manager, for a second time. In cases where an
existing Entity was already updated and is now being updated
again, Hibernate will merge update requests as one within the
same transaction. Essentially a second save becomes a no-op.
Persistence conflicts could still arise, such as the case where
a new Entity was indirectly persisted earlier as part of a root
Entity save operation. Recognizing various types of conflicts
with persistence of an Entity already persisted and coding
around them enables greater coverage for automatic CRUD
Orchestrations.

New Entities in the object graph closure of a root Entity,
already persisted when root Entity is saved, should not be
presented to the persistence layer again in the same transac-
tion. Within the CRUD Orchestration Delegate, an Entity can
be examined for the value of isNew(). If the value is true and
the Entity also has an ID value (indicating instance was cre-
ated in an earlier save) it has had CRUD Orchestrations
executed, and is not persisted again.

In Repository save and delete operations that supply an
input array of Entities, it may be possible for duplicate
instances to appear either explicitly in the array elements or
implicitly in the object graph closures of Entities in the array.
Unless handled, duplicate instances can result in multiple
executions of CRUD Orchestrations for the same Entity. The
Repository identifies duplicate Entities and throws an excep-
tion when encountered to help caller to supply Entities with-
out duplicates to Repository

US 9,135,089 B2

11

Deleting associated Entities in the object graph closure of
a root Entity may break the semantics of relationship. For
example, a delete of an Invoice should not result in removal of
the Customer associated with it. The Repository will only
delete the root Entity and therefore only run CRUD (i.e.,
delete) Orchestrations on it. This means that Entities removed
orupdated in the object graph closure of root Entity following
delete of the root Entity will not have CRUD Orchestrations
run.

A delete operation called upon a composition child should
throw an exception. The Repository would flip the child to its
root parent and invoke a delete on it, resulting in removal of
the parent and all its children. This should not be the intention
of caller. If a child should be deleted, the parent should be
modified with removal of designated child and then saved.

A new composition child sent to the Repository save opera-
tion should be the only new child of a parent Entity. It is not
possible to determine the appropriate child Entity when more
than one new child Entity is being created under the same
parent. InvalidOperationException is thrown should this situ-
ation arise.

Visitor

A visitor can be implemented to identify new or updated
Entities in object graph closure of an Entity passed to Reposi-
tory save and delete methods. The visitor implements IEnti-
tyVisitor. For both saves and deletes, the visitor can:

1. Provide a way to toggle between save and delete modes.

2. Traverse the entire object graph that is passed into the
save(Entity)/delete(Entity) methods, and the entire
array of entire object graphs that is passed into the save
(Entity[])/delete(Entity[| methods, while performing
cycle detection to avoid visiting any node more than
once (already part of the visitor implementation in Enti-
tyCommon).

3. Analyze the nodes in the object graph(s) to identify and
collect Entities that should be passed to the CRUD
Orchestration Delegate.

On saves, the visitor will:

1. Set the unique ID in every Entity in which it is not
already set, except for Entities that are Extensions.

2. Put new Entities in create arrays specific to each exact
type of Entity.

3. Put previously saved, currently dirty Entities in update
arrays specific to each exact type of Entity.

4. Make certain each Entity appears only once in the entire
set of arrays.

5. Replace Extensions with what they extend.

6. Replace composition child Entities with their parent
Entities, transitively, until reaching the ultimate parents.

7. Make available to Repository the arrays Entities col-
lected.

On deletes, the visitor can determine if any Entity in the
object graph closure is new, enabling the Repository to throw
an exception. Note that the Entity Service already does this,
but it is wasteful to send an entire graph to the server if the
system can catch the error earlier.

Repository Behavior
When Repository save is called, Repository can:
1. Start a transaction.

Create a visitor and put it in save mode.

Execute the visitor on input Entity or Entities.

Flip root Entity identified as an Extension to extended

Entity.

5. Flip root Entity identified as a composition child to root
composition parent.

6. Submit root Entity to the CRUD Orchestration Delegate
update or create method.

2.
3,
4.

10

15

20

25

30

35

40

45

50

55

60

65

12

7. Submit each Entity identified by the visitor to CRUD
Orchestration Delegate update or create method.

8. Commit the transaction to complete persistence of Enti-
ties to the database.

9. Return saved Entity/Entities to caller.

When Repository delete is called, Repository can:

1. Start a transaction.

2. Create a visitor and put it in delete mode.

3. Execute visitor on root Entity to throw an exception if
new Entities are found in object graph closure.

4. For delete(Entity[]), throw an exception if duplicate
Entities found in object graph closures.

5. Submit root Entity to the CRUD Orchestration Delegate
delete method.

6. Commit the transaction.

Exceptions

A number of new error situations are identified by the
Repository in processing input Entities for save and delete
operations. In each case InvalidOperationException is
thrown. The exception is caught by the Repository in order to
roll back transaction originally initiated for save or delete
operation. Note that Exception details:

1. A new Entity was supplied to delete operation.

2. A composition child with no composition parent
instance was found in object graph closure of an Entity
supplied to save operation.

3. A composition child was supplied to delete operation.
Given the Repository always flips to the parent, a delete
of the parent is not appropriate.

4. Multiple occurrences of same Entity instance found in
object graph closure of Entity or Entities supplied to
save operation.

5. No resolved Entity was found in object graph closure of
an Entity supplied to save operation.

6. Unable to return a saved object corresponding to an
Entity supplied to a save operation.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of illustra-
tion and description. They are not intended to be exhaustive or
to limit the present invention to the forms disclosed. Accord-
ingly, many modifications and variations will be apparent to
practitioners skilled in the art. Additionally, the above disclo-
sure is not intended to limit the present invention. The scope
of the present invention is defined by the appended claims.

What is claimed is:

1. A method for implementing a persistence application
programming interface (API) that is platform independent
and can make up-calls to business logic, the method compris-
ing:

receiving a request at the API to execute a command at a

persistence tier of an n-tier distributed application;

in response to the request, determining an entity type for an

entity affected by the command;

identifying a function at a middle tier of the n-tier distrib-

uted application that is associated with the entity type
and the command, wherein the middle tier includes the
business logic;

sending an instruction from the API at the persistence tier

to the middle tier to execute the function, wherein the
instruction specifies the function, and wherein the func-
tion already exists at the middle tier, whereby the per-
sistence tier is directing the execution of the function at
the middle tier by making an up-call to the middle tier;
and

upon receiving a confirmation at the API that the function

executed, executing the command at the persistence tier.

US 9,135,089 B2

13

2. The method of claim 1, wherein sending the instruction
to the middle tier further involves sending the command to the
middle tier, wherein a portion of the command is used as a
parameter for the function.

3. The method of claim 1, further comprising receiving a
second request from the middle tier at the API to execute a
second command at the persistence tier.

4. The method of claim 3, further comprising:

in response to the second request, determining a second

entity type for a second entity affected by the second
command;

identifying a second function at the middle tier of the n-tier

distributed application that is associated with the second
entity type and the second command;

sending a second instruction to the middle tier to execute

the second function; and

upon receiving a second confirmation at the API that the

second function executed, executing the second com-
mand at the persistence tier.

5. The method of claim 1, further comprising:

creating a transaction at the API that includes at least one of

the instruction and the command;

determining if the function executed successfully at the

middle tier and the command executed successfully at
the persistence layer;

if so, committing the transaction; and

if not, rolling-back the transaction.

6. The method of claim 5, wherein creating the transaction
involves creating a persistence tier sub-transaction at the per-
sistence tier, wherein committing the transaction involves
committing the persistence tier sub-transaction, and wherein
rolling-back the transaction involves rolling-back the persis-
tence tier sub-transaction.

7. The method of claim 1, wherein the persistence tier
includes a relational database.

8. The method of claim 1, wherein prior to identifying the
function at the middle tier of the n-tier distributed application,
the method further comprises receiving a registration at the
API that identifies the function and the associated entity type
and command.

9. The method of claim 1, wherein the steps of identifying
the function at the middle tier and sending the instruction to
the middle tier are handled by an Orchestration Delegate,
wherein the Orchestration Delegate orders the execution of
code previously registered with the API when a registration
condition is satisfied.

10. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for implementing a persis-
tence application programming interface (API) that is plat-
form independent and can make up-calls to business logic, the
method comprising:

receiving a request at the API to execute a command at a

persistence tier of an n-tier distributed application;

in response to the request, determining an entity type for an

entity affected by the command;

identifying a function at a middle tier of the n-tier distrib-

uted application that is associated with the entity type
and the command, wherein the middle tier includes the
business logic;

sending an instruction from the API at the persistence tier

to the middle tier to execute the function, wherein the
instruction specifies the function, and wherein the func-
tion already exists at the middle tier, whereby the per-
sistence tier is directing the execution of the function at
the middle tier by making an up-call to the middle tier;
and

10

15

20

25

30

40

45

50

55

60

65

14

upon receiving a confirmation at the API that the function

executed, executing the command at the persistence tier.

11. The non-transitory computer-readable storage medium
of claim 10, wherein sending the instruction to the middle tier
further involves sending the command to the middle tier,
wherein a portion of the command is used as a parameter for
the function.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the method further comprises receiving
a second request from the middle tier at the API to execute a
second command at the persistence tier.

13. The non-transitory computer-readable storage medium
of claim 12, wherein the method further comprises:

in response to the second request, determining a second

entity type for a second entity affected by the second
command;

identifying a second function at the middle tier of the n-tier

distributed application that is associated with the second
entity type and the second command;

sending a second instruction to the middle tier to execute

the second function; and

upon receiving a second confirmation at the API that the

second function executed, executing the second com-
mand at the persistence tier.

14. The non-transitory computer-readable storage medium
of claim 10, wherein the method further comprises:

creating a transaction at the API thatincludes at least one of

the instruction and the command;

determining if the function executed successfully at the

middle tier and the command executed successfully at
the persistence layer;

if so, committing the transaction; and

if not, rolling-back the transaction.

15. The non-transitory computer-readable storage medium
of claim 14, wherein creating the transaction involves creat-
ing a persistence tier sub-transaction at the persistence tier,
wherein committing the transaction involves committing the
persistence tier sub-transaction, and wherein rolling-back the
transaction involves rolling-back the persistence tier sub-
transaction.

16. The non-transitory computer-readable storage medium
of claim 10, wherein the persistence tier includes a relational
database.

17. The non-transitory computer-readable storage medium
of claim 10, wherein prior to identifying the function at the
middle tier of the n-tier distributed application, the method
further comprises receiving a registration at the API that
identifies the function and the associated entity type and
command.

18. The non-transitory computer-readable storage medium
of claim 10, wherein the steps of identifying the function at
the middle tier and sending the instruction to the middle tier
are handled by an Orchestration Delegate, wherein the
Orchestration Delegate orders the execution of code previ-
ously registered with the API when a registration condition is
satisfied.

19. An apparatus configured to implement a persistence
application programming interface (API) that is platform
independent and can make up-calls to business logic, com-
prising:

a memory;

a processor;

a receiving mechanism configured to receive a request at

the API to execute a command at a persistence tier of an
n-tier distributed application;

US 9,135,089 B2
15

a determination mechanism configured to determine an
entity type for an entity affected by the command in
response to the request;

an identification mechanism configured to identify a func-
tion at a middle tier of the n-tier distributed application 5
that is associated with the entity type and the command,
wherein the middle tier includes the business logic;

a sending mechanism configured to send an instruction
from the API at the persistence tier to the middle tier to
execute the function, wherein the instruction specifies 10
the function, and wherein the function already exists at
the middle tier, whereby the persistence tier is directing
the execution of the function at the middle tier by mak-
ing an up-call to the middle tier; and

an execution mechanism configured to execute the com- 15
mand at the persistence tier upon receiving a confirma-
tion at the API that the function executed.

20. The apparatus of claim 19, wherein the sending mecha-
nism is further configured to send the command to the middle
tier, wherein a portion of the command is used as a parameter 20
for the function.

